Heterogeneous information networks

Author:

Sun Yizhou1,Han Jiawei2,Yan Xifeng3,Yu Philip S.4,Wu Tianyi5

Affiliation:

1. UCLA

2. UIUC

3. UCSB

4. UIC

5. Meta

Abstract

In 2011, we proposed PathSim to systematically define and compute similarity between nodes in a heterogeneous information network (HIN), where nodes and links are from different types. In the PathSim paper, we for the first time introduced HIN with general network schema and proposed the concept of meta-paths to systematically define new relation types between nodes. In this paper, we summarize the impact of PathSim paper in both academia and industry. We start from the algorithms that are based on meta-path-based feature engineering, then move on to the recent development in heterogeneous network representation learning, including both shallow network embedding and heterogeneous graph neural networks. In the end, we make the connection between knowledge graphs and HINs and discuss the implication of meta-paths in the symbolic reasoning scenario. Finally, we point out several future directions.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference62 articles.

1. Antoine Bordes Nicolas Usunier Alberto Garcia-Duran Jason Weston and Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational data. In NIPS. Antoine Bordes Nicolas Usunier Alberto Garcia-Duran Jason Weston and Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational data. In NIPS.

2. Yuwei Cao , Hao Peng , Jia Wu , Yingtong Dou , Jianxin Li , and Philip S . Yu . 2021 . Knowledge-Preserving Incremental Social Event Detection via Heterogeneous GNNs. In WWW. Yuwei Cao, Hao Peng, Jia Wu, Yingtong Dou, Jianxin Li, and Philip S. Yu. 2021. Knowledge-Preserving Incremental Social Event Detection via Heterogeneous GNNs. In WWW.

3. Yukuo Cen Xu Zou Jianwei Zhang Hongxia Yang Jingren Zhou and Jie Tang. 2019. Representation Learning for Attributed Multiplex Heterogeneous Network. In KDD. Yukuo Cen Xu Zou Jianwei Zhang Hongxia Yang Jingren Zhou and Jie Tang. 2019. Representation Learning for Attributed Multiplex Heterogeneous Network. In KDD.

4. Task-Guided and Path-Augmented Heterogeneous Network Embedding for Author Identification

5. RLogic: Recursive Logical Rule Learning from Knowledge Graphs

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Paths2Pair: Meta-path Based Link Prediction in Billion-Scale Commercial Heterogeneous Graphs;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit;ACM Computing Surveys;2024-05-18

3. Clustering on heterogeneous IoT information network based on meta path;Science Progress;2024-04

4. CDBMA: Community Detection in Heterogeneous Networks Based on Multi-attention Mechanism;Communications in Computer and Information Science;2023-11-15

5. Prerequisite-driven Fair Clustering on Heterogeneous Information Networks;Proceedings of the ACM on Management of Data;2023-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3