Clustering on heterogeneous IoT information network based on meta path

Author:

Zhao Kuo123ORCID,Zhang Huajian1,Li Jiaxin1,Pan Qifu1,Lai Li1,Nie Yike1,Zhang Zhongfei234

Affiliation:

1. School of Intelligent Systems Science and Engineering, Jinan University, Zhuhai, P.R. China

2. Guangdong International Cooperation Base of Science and Technology for GBA Smart Logistics, Jinan University, Zhuhai, P.R. China

3. Institute of Physical Internet, Jinan University, Zhuhai, P.R. China

4. School of Management, Jinan University, Guangzhou, P.R. China

Abstract

As the Internet and Internet of Things (IoT) continue to develop, Heterogeneous Information Networks (HIN) have formed complex interaction relationships among data objects. These relationships are represented by various types of edges (meta-paths) that contain rich semantic information. In the context of IoT data applications, the widespread adoption of Trigger-Action Patterns makes the management and analysis of heterogeneous data particularly important. This study proposes a meta-path-based clustering method for heterogeneous IoT data called I-RankClus, which aims to improve the modeling and analysis efficiency of IoT data. By combining ranking with clustering algorithms, the PageRank algorithm was used to calculate the intraclass influence of objects in the network. The HITS algorithm then transfers the influence to the core objects, thereby optimizing the classification of objects during the clustering process. The I-RankClus algorithm does not process each meta-path individually, but instead integrates multiple meta-paths to enhance the interpretability and clustering performance of the model. The experimental results show that the I-RankClus algorithm can process complex IoT datasets more effectively than traditional clustering methods and provide more accurate clustering outcomes. Furthermore, through a detailed analysis of meta-paths, this study explored the influence and importance of different meta-paths, thereby validating the effectiveness of the algorithm. Overall, the research presented in this paper not only improves the application effects of HINs in IoT data analysis but also provides valuable methods and insights for future network data processing.

Funder

National Key Research and Development Program of China

Basic and Applied Basic Research Foundation of Guangdong Province

2018 Guangzhou Leading Innovation Team Program

2019 Guangdong Special Support Talent Program – Innovation and Entrepreneurship Leading Team

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3