Prerequisite-driven Fair Clustering on Heterogeneous Information Networks

Author:

Zhang Juntao1ORCID,Wang Sheng1ORCID,Sun Yuan2ORCID,Peng Zhiyong1ORCID

Affiliation:

1. Wuhan University, Wuhan, China

2. La Trobe University, Melbourne, Australia

Abstract

This paper studies the problem of fair clustering on heterogeneous information networks (HINs) by considering constraints on structural and sensitive attributes. We propose a Prerequisite-driven Fair Clustering (PDFC ) algorithm to solve this problem. Specifically, we define the structural constraint on the connection among nodes in HINs by combining meta-paths and prerequisite meta-paths and introduce Fairlets as the balance constraint. Under two constraints, we learn node embeddings based on graph models and perform theCholesky decomposition to obtain their orthogonal embeddings. We fuse node embeddings under constraints, define the loss function of PDFC, and perform k-means to achieve clustering. In addition, we design an update strategy of the adjacency matrix to achieve dynamic PDFC over time. Compared with several fair clustering algorithms on three real-world datasets, our experimental results verify the effectiveness and efficiency of PDFC.

Funder

the National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Reference71 articles.

1. Mohsen Abbasi Aditya Bhaskara and Suresh Venkatasubramanian. 2021. Fair Clustering via Equitable Group Representations. In FAccT. 504--514. Mohsen Abbasi Aditya Bhaskara and Suresh Venkatasubramanian. 2021. Fair Clustering via Equitable Group Representations. In FAccT. 504--514.

2. 020)]% Abraham0S20 , Savitha Sam Abraham , Deepak P, and Sowmya S. Sundaram. 2020 . Fairness in Clustering with Multiple Sensitive Attributes. In EDBT. 287--298. 020)]% Abraham0S20, Savitha Sam Abraham, Deepak P, and Sowmya S. Sundaram. 2020. Fairness in Clustering with Multiple Sensitive Attributes. In EDBT. 287--298.

3. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Source;Altman N S;The American Statistician,1992

4. Evolutionary Clustering via Message Passing

5. Abolfazl Asudeh H. V. Jagadish Julia Stoyanovich and Gautam Das. 2019. Designing Fair Ranking Schemes. In SIGMOD. 1259--1276. Abolfazl Asudeh H. V. Jagadish Julia Stoyanovich and Gautam Das. 2019. Designing Fair Ranking Schemes. In SIGMOD. 1259--1276.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Cross-layer Community Search in Large Multilayer Graphs;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. F3KM: Federated, Fair, and Fast k-means;Proceedings of the ACM on Management of Data;2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3