Streaming anomaly detection using randomized matrix sketching

Author:

Huang Hao1,Kasiviswanathan Shiva Prasad2

Affiliation:

1. General Electric Global Research, San Ramon, CA

2. Samsung Research America, Mountain View, CA

Abstract

Data is continuously being generated from sources such as machines, network traffic, application logs, etc. Timely and accurate detection of anomalies in massive data streams has important applications such as in preventing machine failures, intrusion detection, and dynamic load balancing. In this paper, we introduce a novel (unsupervised) anomaly detection framework which can be used to detect anomalies in a streaming fashion by making only one pass over the data while utilizing limited storage. We adapt ideas from matrix sketching to maintain, in a streaming model, a set of few orthogonal vectors that form a good approximate basis for all the observed data. Using this constructed orthogonal basis, anomalies in new incoming data are detected based on a simple reconstruction error test. We theoretically prove that our algorithm compares favorably with an offline approach based on expensive global singular value decomposition (SVD) updates. Additionally, we apply ideas from randomized low-rank matrix approximations to further speedup the algorithm. The experimental results show the effectiveness and efficiency of our approach over other popular scalable anomaly detection approaches.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TWStream: Three-Way Stream Clustering;IEEE Transactions on Fuzzy Systems;2024-09

2. MicroView: Cloud-Native Observability with Temporal Precision;Proceedings of the on CoNEXT Student Workshop 2023;2023-12-05

3. METER: A Dynamic Concept Adaptation Framework for Online Anomaly Detection;Proceedings of the VLDB Endowment;2023-12

4. On-Line Network Traffic Anomaly Detection Based on Tensor Sketch;IEEE Transactions on Parallel and Distributed Systems;2023-12

5. Review of Anomaly Detection Algorithms for Data Streams;Applied Sciences;2023-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3