Review of Anomaly Detection Algorithms for Data Streams

Author:

Lu Tianyuan1,Wang Lei1,Zhao Xiaoyong1

Affiliation:

1. School of Information Management, Beijing Information Science and Technology University, Beijing 100192, China

Abstract

With the rapid development of emerging technologies such as self-media, the Internet of Things, and cloud computing, massive data applications are crossing the threshold of the era of real-time analysis and value realization, which makes data streams ubiquitous in all kinds of industries. Therefore, detecting anomalies in such data streams could be very important and full of challenges. For example, in industries such as electricity and finance, data stream anomalies often contain information that can help avoiding risks and support decision making. However, most traditional anomaly detection algorithms rely on acquiring global information about the data, which is hard to apply to stream data scenarios. Currently, the reviews of the algorithm in the field of anomaly detection, both domestically and internationally, tend to focus on the exposition of anomaly detection algorithms in static data environments, while lacking in the induction and analysis of anomaly detection algorithms in the context of streaming data. As a result, unlike the existing literature reviews, this review provides the current mainstream anomaly detection algorithms in data streaming scenarios and categorizes them into three types on the basis of their fundamental principles: (1) based on offline learning; (2) based on semi-online learning; (3) based on online learning. This review discusses the current state of research on data stream anomaly detection and studies the key issues in various algorithms for detecting anomalies in data streams on the basis of concise summarization. Moreover, the review conducts a detailed comparison of the pros and cons of the algorithms. Finally, the future challenges in the field are analyzed, and future research directions are proposed.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Zoom-In Process Mining Based Analysis Model for Document Workflows;2024 8th International Conference on Computer, Software and Modeling (ICCSM);2024-07-04

2. Real-Time Anomaly Detection in Large-Scale Sensor Networks using Isolation Forests;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

3. Detecting Network Anomalies Using the Rain Optimization Algorithm and Hoeffding Tree-based Autoencoder;2024 10th International Conference on Web Research (ICWR);2024-04-24

4. Federated Learning for Unsupervised Anomaly Detection in ADLs of Elderly in Single-resident Smart Homes;Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing;2024-04-08

5. Anomaly Detection in Streaming Data using Isolation Forest;2024 Seventh International Women in Data Science Conference at Prince Sultan University (WiDS PSU);2024-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3