Ember

Author:

Suri Sahaana1,Ilyas Ihab F.2,Ré Christopher1,Rekatsinas Theodoros3

Affiliation:

1. Stanford University

2. University of Waterloo

3. UW-Madison

Abstract

Structured data, or data that adheres to a pre-defined schema, can suffer from fragmented context: information describing a single entity can be scattered across multiple datasets or tables tailored for specific business needs, with no explicit linking keys. Context enrichment, or rebuilding fragmented context, using keyless joins is an implicit or explicit step in machine learning (ML) pipelines over structured data sources. This process is tedious, domain-specific, and lacks support in now-prevalent no-code ML systems that let users create ML pipelines using just input data and high-level configuration files. In response, we propose Ember, a system that abstracts and automates keyless joins to generalize context enrichment. Our key insight is that Ember can enable a general keyless join operator by constructing an index populated with task-specific embeddings. Ember learns these embeddings by leveraging Transformer-based representation learning techniques. We describe our architectural principles and operators when developing Ember, and empirically demonstrate that Ember allows users to develop no-code context enrichment pipelines for five domains, including search, recommendation and question answering, and can exceed alternatives by up to 39% recall, with as little as a single line configuration change.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference91 articles.

1. 2018. Datasets for DeepMatcher paper. https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md 2018. Datasets for DeepMatcher paper. https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

2. 2021. Cloud AutoML. https://cloud.google.com/automl 2021. Cloud AutoML. https://cloud.google.com/automl

3. 2021. Data Robot. https://www.datarobot.com/platform/automated-machine-learning/ 2021. Data Robot. https://www.datarobot.com/platform/automated-machine-learning/

4. 2021. h20.ai. https://www.h2o.ai/ 2021. h20.ai. https://www.h2o.ai/

5. 2021. IMDb Datasets. https://datasets.imdbws.com/ 2021. IMDb Datasets. https://datasets.imdbws.com/

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Language Models: Principles and Practice;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. DB-BERT: making database tuning tools “read” the manual;The VLDB Journal;2023-12-27

3. NumJoin: Discovering Numeric Joinable Tables with Semantically Related Columns;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

4. Demonstrating GPT-DB: Generating Query-Specific and Customizable Code for SQL Processing with GPT-4;Proceedings of the VLDB Endowment;2023-08

5. Adaptive Distributed Streaming Similarity Joins;Proceedings of the 17th ACM International Conference on Distributed and Event-based Systems;2023-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3