Demonstrating GPT-DB: Generating Query-Specific and Customizable Code for SQL Processing with GPT-4

Author:

Trummer Immanuel1

Affiliation:

1. Cornell University, Ithaca, NY, USA

Abstract

GPT-DB generates code for SQL processing in general-purpose programming languages such as Python. Generated code can be freely customized using user-provided natural language instructions. This enables users, for instance, to try out specific libraries for SQL processing or to generate non-standard output while processing. GPT-DB is based on OpenAI's GPT model series, neural networks capable of translating natural language instructions into code. By default, GPT-DB exploits the most recently released GPT-4 model whereas visitors may also select prior versions for comparison. GPT-DB automatically generates query-specific prompts, instructing GPT on code generation. These prompts include a description of the target database, as well as logical query plans described as natural language text, and instructions for customization. GPT-DB automatically verifies, and possibly re-generates, code using a reference database system for result comparisons. It enables users to select code samples for training, thereby increasing accuracy for future queries. The proposed demonstration showcases code generation for various queries and with varying instructions for code customization.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference14 articles.

1. Jacob Devlin , Ming Wei Chang , Kenton Lee, and Kristina Toutanova. 2019 . BERT : Pre-training of deep bidirectional transformers for language understanding. In NAACL. 4171--4186. arXiv:1810.04805 Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In NAACL. 4171--4186. arXiv:1810.04805

2. GPT-3: Its Nature, Scope, Limits, and Consequences

3. Nat Friedman . 2021. Introducing GitHub Copilot: your AI pair programmer. https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/ ( 2021 ). Nat Friedman. 2021. Introducing GitHub Copilot: your AI pair programmer. https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/ (2021).

4. Scrutinizer: A mixed-initiative approach to large-scale, data-driven claim verification;Karagiannis Georgios;VLDB,2020

5. Fei Li and HV Jagadish. 2014. NaLIR: an interactive natural language interface for querying relational databases. In SIGMOD. 709--712. Fei Li and HV Jagadish. 2014. NaLIR: an interactive natural language interface for querying relational databases. In SIGMOD. 709--712.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3