DB-BERT: making database tuning tools “read” the manual

Author:

Trummer Immanuel

Abstract

AbstractDB-BERT is a database tuning tool that exploits information gained via natural language analysis of manuals and other relevant text documents. It uses text to identify database system parameters to tune as well as recommended parameter values. DB-BERT applies large, pre-trained language models (specifically, the BERT model) for text analysis. During an initial training phase, it fine-tunes model weights in order to translate natural language hints into recommended settings. At run time, DB-BERT learns to aggregate, adapt, and prioritize hints to achieve optimal performance for a specific database system and benchmark. Both phases are iterative and use reinforcement learning to guide the selection of tuning settings to evaluate (penalizing settings that the database system rejects while rewarding settings that improve performance). In our experiments, we leverage hundreds of text documents about database tuning as input for DB-BERT. We compare DB-BERT against various baselines, considering different benchmarks (TPC-C and TPC-H), metrics (throughput and run time), as well as database systems (PostgreSQL and MySQL). The experiments demonstrate clearly that DB-BERT benefits from combining general information about database tuning, mined from text documents, with scenario-specific insights, gained via trial runs. The full source code of DB-BERT is available online at https://itrummer.github.io/dbbert/.

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems

Reference59 articles.

1. Aken, D.V., Pavlo, A., Gordon, G.J.: Automatic database management system tuning through large-scale machine learning. In SIGMOD. pp. 1009–1024. (2017)

2. Arora, S., Yang, B., Eyuboglu, S., Narayan, A., Hojel, A., Trummer, I., Re, C.: language models enable simple systems for generating structured views of heterogeneous data lakes. In: PVLDB. vol. 17(2), pp. 92–105. (2023)

3. Basu, D., Lin, Q., Chen, W., Vo, H.T., Yuan, Z., Senellart, P., Bressan, S.: Cost-model oblivious database tuning with reinforcement learning. In: LNCS. vol. 9261, pp. 253–268. (2015)

4. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language models are few-shot learners. Adv. Neural Inform. Process. Syst. 1877–1901 (2020)

5. Chen, Z., Fan, J., Madden, S., Tang, N.: Symphony: towards natural language query answering over multi-modal data lakes. In CIDR. pp. 1–7. (2023)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3