1. Aken, D.V., Pavlo, A., Gordon, G.J.: Automatic database management system tuning through large-scale machine learning. In SIGMOD. pp. 1009–1024. (2017)
2. Arora, S., Yang, B., Eyuboglu, S., Narayan, A., Hojel, A., Trummer, I., Re, C.: language models enable simple systems for generating structured views of heterogeneous data lakes. In: PVLDB. vol. 17(2), pp. 92–105. (2023)
3. Basu, D., Lin, Q., Chen, W., Vo, H.T., Yuan, Z., Senellart, P., Bressan, S.: Cost-model oblivious database tuning with reinforcement learning. In: LNCS. vol. 9261, pp. 253–268. (2015)
4. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language models are few-shot learners. Adv. Neural Inform. Process. Syst. 1877–1901 (2020)
5. Chen, Z., Fan, J., Madden, S., Tang, N.: Symphony: towards natural language query answering over multi-modal data lakes. In CIDR. pp. 1–7. (2023)