Leveraging query logs and machine learning for parametric query optimization

Author:

Vaidya Kapil1,Dutt Anshuman2,Narasayya Vivek2,Chaudhuri Surajit2

Affiliation:

1. MIT

2. Microsoft Research

Abstract

Parametric query optimization (PQO) must address two problems: identify a relatively small number of plans to cache for a parameterized query (populateCache), and efficiently select the best cached plan to use for executing any instance of the parameterized query (getPlan). Our approach decouples these two decisions. We formulate populateCache as an optimization problem with the goal of identifying a set of plans that minimizes the optimizer estimated cost of queries in the log, and present an efficient algorithm. For getPlan, we leverage query logs to train machine learning (ML) models to choose the lowest optimizer-estimated cost plan from the cached plans. We conduct extensive experiments using complex parameterized queries from benchmarks and real workloads. Our algorithm for populateCache achieves low geometric mean sub-optimality (1.2) even for complex queries using relatively few plans, and scales well to large query logs. The mean latency of our ML model based getPlan technique (~ 210μ sec ) is between one to four orders of magnitude faster compared to prior PQO techniques. The mean sub-optimality is low (1.05), and the 95 th percentile sub-optimality (1.3) is between 1.1× and 25× lower compared to prior techniques. Finally, we present an efficient algorithm for getPlan that leverages execution time information in query logs to circumvent inaccuracies of the query optimizer's cost estimates.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference43 articles.

1. [n.d.]. https://scikit-learn.org/stable/modules/tree.html. [n.d.]. https://scikit-learn.org/stable/modules/tree.html.

2. [n.d.]. http://www.tpc.org/tpcds/. [n.d.]. http://www.tpc.org/tpcds/.

3. [n.d.]. https://www.microsoft.com/en-us/download/confirmation.aspx?id=52430. [n.d.]. https://www.microsoft.com/en-us/download/confirmation.aspx?id=52430.

4. [n.d.]. Plan Caching in SQL Server. https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-plan-cache-object?view=sql-server-ver15. [n.d.]. Plan Caching in SQL Server. https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-plan-cache-object?view=sql-server-ver15.

5. [n.d.]. Plan guides in SQL Server. https://docs.microsoft.com/en-us/sql/relational-databases/performance/plan-guides?view=sql-server-ver15. [n.d.]. Plan guides in SQL Server. https://docs.microsoft.com/en-us/sql/relational-databases/performance/plan-guides?view=sql-server-ver15.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3