Fine-grained modeling and optimization for intelligent resource management in big data processing

Author:

Lyu Chenghao1,Fan Qi2,Song Fei2,Sinha Arnab2,Diao Yanlei3,Chen Wei4,Ma Li4,Feng Yihui4,Li Yaliang4,Zeng Kai4,Zhou Jingren4

Affiliation:

1. University of Massachusetts, Amherst

2. Ecole Polytechnique

3. University of Massachusetts, Amherst and Ecole Polytechnique

4. Alibaba Group

Abstract

Big data processing at the production scale presents a highly complex environment for resource optimization (RO), a problem crucial for meeting performance goals and budgetary constraints of analytical users. The RO problem is challenging because it involves a set of decisions (the partition count, placement of parallel instances on machines, and resource allocation to each instance), requires multi-objective optimization (MOO), and is compounded by the scale and complexity of big data systems while having to meet stringent time constraints for scheduling. This paper presents a MaxCompute based integrated system to support multi-objective resource optimization via fine-grained instance-level modeling and optimization. We propose a new architecture that breaks RO into a series of simpler problems, new fine-grained predictive models, and novel optimization methods that exploit these models to make effective instance-level RO decisions well under a second. Evaluation using production workloads shows that our new RO system could reduce 37--72% latency and 43--78% cost at the same time, compared to the current optimizer and scheduler, while running in 0.02-0.23s.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference69 articles.

1. Data Classification

2. Malay Bag , Alekh Jindal , and Hiren Patel . 2020 . Towards Plan-aware Resource Allocation in Serverless Query Processing. In 12th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2020 , July 13 --14 , 2020, Amar Phanishayee and Ryan Stutsman (Eds.). USENIX Association. https://www.usenix.org/conference/hotcloud20/presentation/bag Malay Bag, Alekh Jindal, and Hiren Patel. 2020. Towards Plan-aware Resource Allocation in Serverless Query Processing. In 12th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2020, July 13--14, 2020, Amar Phanishayee and Ryan Stutsman (Eds.). USENIX Association. https://www.usenix.org/conference/hotcloud20/presentation/bag

3. Vinayak R. Borkar , Michael J. Carey , Raman Grover , Nicola Onose , and Rares Vernica . 2011 . Hyracks: A flexible and extensible foundation for data-intensive computing. In ICDE. 1151--1162. Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and Rares Vernica. 2011. Hyracks: A flexible and extensible foundation for data-intensive computing. In ICDE. 1151--1162.

4. Thomas H. Cormen , Charles E. Leiserson , Ronald L. Rivest , and Clifford Stein . 2009. Introduction to Algorithms , Third Edition (3 rd ed.). The MIT Press . Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

5. Samuel Daulton , Maximilian Balandat , and Eytan Bakshy . 2020. Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization. CoRR abs/2006.05078 ( 2020 ). arXiv:2006.05078 https://arxiv.org/abs/2006.05078 Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. 2020. Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization. CoRR abs/2006.05078 (2020). arXiv:2006.05078 https://arxiv.org/abs/2006.05078

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3