Kepler: Robust Learning for Parametric Query Optimization

Author:

Doshi Lyric1ORCID,Zhuang Vincent1ORCID,Jain Gaurav1ORCID,Marcus Ryan2ORCID,Huang Haoyu1ORCID,Altinbüken Deniz1ORCID,Brevdo Eugene1ORCID,Fraser Campbell1ORCID

Affiliation:

1. Google, Mountain View, CA, USA

2. University of Pennsylvania, Philadelphia, PA, USA

Abstract

Most existing parametric query optimization (PQO) techniques rely on traditional query optimizer cost models, which are often inaccurate and result in suboptimal query performance. We propose Kepler, an end-to-end learning-based approach to PQO that demonstrates significant speedups in query latency over a traditional query optimizer. Central to our method is Row Count Evolution (RCE), a novel plan generation algorithm based on perturbations in the sub-plan cardinality space. While previous approaches require accurate cost models, we bypass this requirement by evaluating candidate plans via actual execution data and training anML model to predict the fastest plan given parameter binding values. Our models leverage recent advances in neural network uncertainty in order to robustly predict faster plans while avoiding regressions in query performance. Experimentally, we show that Kepler achieves significant improvements in query runtime on multiple datasets on PostgreSQL.

Publisher

Association for Computing Machinery (ACM)

Reference39 articles.

1. 2022. Introduction to Aurora PostgreSQL Query Plan Management. https://aws.amazon.com/blogs/database/introduction-to-aurora-postgresql-query-plan-management/ 2022. Introduction to Aurora PostgreSQL Query Plan Management. https://aws.amazon.com/blogs/database/introduction-to-aurora-postgresql-query-plan-management/

2. 2022. Oracle: Improving Real-World Performance Through Cursor Sharing. https://docs.oracle.com/en/database/oracle/oracle-database/18/tgsql/improving-rwp-cursor-sharing.html 2022. Oracle: Improving Real-World Performance Through Cursor Sharing. https://docs.oracle.com/en/database/oracle/oracle-database/18/tgsql/improving-rwp-cursor-sharing.html

3. 2022. Parameter Sensitivity Plan optimization. https://docs.microsoft.com/en-us/sql/relational-databases/performance/parameter-sensitivity-plan-optimization?view=sql-server-ver16 2022. Parameter Sensitivity Plan optimization. https://docs.microsoft.com/en-us/sql/relational-databases/performance/parameter-sensitivity-plan-optimization?view=sql-server-ver16

4. 2022. Skewed Data Generator for TPCH. https://github.com/gunaprsd/SkewedDataGenerator 2022. Skewed Data Generator for TPCH. https://github.com/gunaprsd/SkewedDataGenerator

5. 2022. TPCH Benchmark. https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp 2022. TPCH Benchmark. https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Holon Approach for Simultaneously Tuning Multiple Components in a Self-Driving Database Management System with Machine Learning via Synthesized Proto-Actions;Proceedings of the VLDB Endowment;2024-07

2. Constrained Quadratic Model for Optimizing Join Orders;Workshop on Quantum Computing and Quantum-Inspired Technology for Data-Intensive Systems and Applications;2024-06-09

3. ROME: Robust Query Optimization via Parallel Multi-Plan Execution;Proceedings of the ACM on Management of Data;2024-05-29

4. Robust Query Optimization in the Era of Machine Learning: State-of-the-Art and Future Directions;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. ASM: Harmonizing Autoregressive Model, Sampling, and Multi-dimensional Statistics Merging for Cardinality Estimation;Proceedings of the ACM on Management of Data;2024-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3