Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses

Author:

Cubillos Francisco A12,Brice Claire13,Molinet Jennifer13,Tisné Sebastién4,Abarca Valentina1,Tapia Sebastián M12,Oporto Christian12,García Verónica13,Liti Gianni5,Martínez Claudio13

Affiliation:

1. Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Chile

2. Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), 9170201 Santiago, Chile

3. Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), 9170201 Chile

4. Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR AGAP (Genetic Improvement and Adaptation of Mediterranean and Tropical Plant Research Unit), Campus International de Baillarguet, 34398 Montpellier, France

5. Institute for Research on Cancer and Ageing of Nice (IRCAN), Centre national de la recherche scientifique (CNRS) unités mixtes de recherche (UMR) 7284, Institut national de la santé et de la recherche médicale (INSERM) U1081, University of Nice Sophia Antipolis, 06107, France

Abstract

Abstract Saccharomyces cerevisiae is responsible for wine must fermentation. In this process, nitrogen represents a limiting nutrient and its scarcity results in important economic losses for the wine industry. Yeast isolates use different strategies to grow in poor nitrogen environments and their genomic plasticity enables adaptation to multiple habitats through improvements in nitrogen consumption. Here, we used a highly recombinant S. cerevisiae multi-parent population (SGRP-4X) derived from the intercross of four parental strains of different origins to identify new genetic variants responsible for nitrogen consumption differences during wine fermentation. Analysis of 165 fully sequenced F12 segregants allowed us to map 26 QTL in narrow intervals for 14 amino acid sources and ammonium, the majority of which represent genomic regions previously unmapped for these traits. To complement this strategy, we performed Bulk segregant RNA-seq (BSR-seq) analysis in segregants exhibiting extremely high and low ammonium consumption levels. This identified several QTL overlapping differentially expressed genes and refined the gene candidate search. Based on these approaches, we were able to validate ARO1, PDC1, CPS1, ASI2, LYP1, and ALP1 allelic variants underlying nitrogen consumption differences between strains, providing evidence of many genes with small phenotypic effects. Altogether, these variants significantly shape yeast nitrogen consumption with important implications for evolution, ecological, and quantitative genomics.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Reference90 articles.

1. Differential expression analysis for sequence count data.;Anders;Genome Biol.,2010

2. HTSeq–a Python framework to work with high-throughput sequencing data.;Anders;Bioinformatics,2015

3. Susceptibility and resistance to ethanol in Saccharomyces strains isolated from wild and fermentative environments.;Arroyo-Lopez;Yeast,2010

4. Bass, J., A. Dabney, and D. Robinson, 2015 qvalue: Q-value Estimation for False Discovery Rate Control. R package version 2.6.0. http://github.com/jdstorey/qvalue. Accessed: November 1, 2016.

5. Analysis of yeast populations during alcoholic fermentation: a six year follow-up study.;Beltran;Syst. Appl. Microbiol.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3