Genome-Wide Association Analyses Reveal Genomic Regions Controlling Canopy Wilting in Soybean

Author:

Steketee Clinton J1ORCID,Schapaugh William T2,Carter Thomas E3,Li Zenglu1

Affiliation:

1. Institute of Plant Breeding, Genetics, and Genomics and Department of Crop and Soil Sciences, The University of Georgia, Athens, GA, 30602

2. Department of Agronomy, Kansas State University, Manhattan, KS, 66506

3. Department of Crop and Soil Sciences, North Carolina State University, USDA-ARS, Raleigh, NC, 27607

Abstract

Abstract Drought stress causes the greatest soybean [Glycine max (L.) Merr.] yield losses among the abiotic stresses in rain-fed U.S. growing areas. Because less than 10% of U.S. soybean hectares are irrigated, combating this stress requires soybean plants which possess physiological mechanisms to tolerate drought for a period of time. Phenotyping for these mechanisms is challenging, and the genetic architecture for these traits is poorly understood. A morphological trait, slow or delayed canopy wilting, has been observed in a few exotic plant introductions (PIs), and may lead to yield improvement in drought stressed fields. In this study, we visually scored wilting during stress for a panel of 162 genetically diverse maturity group VI-VIII soybean lines genotyped with the SoySNP50K iSelect BeadChip. Field evaluation of canopy wilting was conducted under rain-fed conditions at two locations (Athens, GA and Salina, KS) in 2015 and 2016. Substantial variation in canopy wilting was observed among the genotypes. Using a genome-wide association mapping approach, 45 unique SNPs that tagged 44 loci were associated with canopy wilting in at least one environment with one region identified in a single environment and data from across all environments. Several new soybean accessions were identified with canopy wilting superior to those of check genotypes. The germplasm and genomic regions identified can be used to better understand the slow canopy wilting trait and be incorporated into elite germplasm to improve drought tolerance in soybean.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3