Genetic mapping reveals the complex genetic architecture controlling slow canopy wilting in soybean

Author:

Menke Ethan,Steketee Clinton J.,Song Qijian,Schapaugh William T.,Carter Thomas E.,Fallen Benjamin,Li ZengluORCID

Abstract

AbstractIn soybean [Glycine max (L.) Merr.], drought stress is the leading cause of yield loss from abiotic stress in rain-fed US growing areas. Only 10% of the US soybean production is irrigated; therefore, plants must possess physiological mechanisms to tolerate drought stress. Slow canopy wilting is a physiological trait that is observed in a few exotic plant introductions (PIs) and may lead to yield improvement under drought stress. Canopy wilting of 130 recombinant inbred lines (RILs) derived from Hutcheson × PI 471938 grown under drought stress was visually evaluated and genotyped with the SoySNP6K BeadChip. Over four years, field evaluations of canopy wilting were conducted under rainfed conditions at three locations across the US (Georgia, Kansas, and North Carolina). Due to the variation in weather among locations and years, the phenotypic data were collected from seven environments. Substantial variation in canopy wilting was observed among the genotypes in the RIL population across environments. Three QTLs were identified for canopy wilting from the RIL population using composite interval mapping on chromosomes (Chrs) 2, 8, and 9 based on combined environmental analyses. These QTLs inherited the favorable alleles from PI 471938 and accounted for 11, 10, and 14% of phenotypic variation, respectively. A list of 106 candidate genes were narrowed down for these three QTLs based on the published information. The QTLs identified through this research can be used as targets for further investigation to understand the mechanisms of slow canopy wilting. These QTLs could be deployed to improve drought tolerance through a targeted selection of the genomic regions from PI 471938.

Funder

United Soybean Board

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3