qUVR-10, a Major Quantitative Trait Locus for Ultraviolet-B Resistance in Rice, Encodes Cyclobutane Pyrimidine Dimer Photolyase

Author:

Ueda Tadamasa1,Sato Tadashi2,Hidema Jun2,Hirouchi Tokuhisa2,Yamamoto Kazuo2,Kumagai Tadashi2,Yano Masahiro1

Affiliation:

1. National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan and

2. Graduate School of Life Science, Tohoku University, Sendai, Miyagi 980-8577, Japan

Abstract

Abstract Rice qUVR-10, a quantitative trait locus (QTL) for ultraviolet-B (UVB) resistance on chromosome 10, was cloned by map-based strategy. It was detected in backcross inbred lines (BILs) derived from a cross between the japonica variety Nipponbare (UV resistant) and the indica variety Kasalath (UV sensitive). Plants homozygous for the Nipponbare allele at the qUVR-10 locus were more resistant to UVB compared with the Kasalath allele. High-resolution mapping using 1850 F2 plants enabled us to delimit qUVR-10 to a <27-kb genomic region. We identified a gene encoding the cyclobutane pyrimidine dimer (CPD) photolyase in this region. Activity of CPD photorepair in Nipponbare was higher than that of Kasalath and nearly isogenic with qUVR-10 [NIL(qUVR-10)], suggesting that the CPD photolyase of Kasalath was defective. We introduced a genomic fragment containing the CPD photolyase gene of Nipponbare to NIL(qUVR-10). Transgenic plants showed the same level of resistance as Nipponbare did, indicating that the qUVR-10 encoded the CPD photolyase. Comparison of the qUVR-10 sequence in the Nipponbare and Kasalath alleles revealed one probable candidate for the functional nucleotide polymorphism. It was indicated that single-base substitution in the CPD photolyase gene caused the alteration of activity of CPD photorepair and UVB resistance. Furthermore, we were able to develop a UV-hyperresistant plant by overexpression of the photolyase gene.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3