Proteostasis Environment Shapes Higher-Order Epistasis Operating on Antibiotic Resistance

Author:

Guerrero Rafael F1,Scarpino Samuel V2,Rodrigues João V3,Hartl Daniel L4,Ogbunugafor C Brandon567

Affiliation:

1. Department of Computer Science, Indiana University, Bloomington, Indiana 47408

2. Network Science Institute, Northeastern University, Boston, Massachusetts 02115

3. Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts 02115

4. Department of Physics, Northeastern University, Boston, Massachusetts 02115

5. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138

6. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138

7. Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912

Abstract

Abstract Epistasis is widely regarded as one of the most important phenomena in genetics. It proposes that the combined effects of mutations cannot be easily predicted from their individual effects. In the present study... Recent studies have affirmed that higher-order epistasis is ubiquitous and can have large effects on complex traits. Yet, we lack frameworks for understanding how epistatic interactions are influenced by central features of cell physiology. In this study, we assess how protein quality control machinery—a critical component of cell physiology—affects epistasis for different traits related to bacterial resistance to antibiotics. Specifically, we disentangle the interactions between different protein quality control genetic backgrounds and two sets of mutations: (i) SNPs associated with resistance to antibiotics in an essential bacterial enzyme (dihydrofolate reductase, or DHFR) and (ii) differing DHFR bacterial species-specific amino acid background sequences (Escherichia coli, Listeria grayi, and Chlamydia muridarum). In doing so, we improve on generic observations that epistasis is widespread by discussing how patterns of epistasis can be partly explained by specific interactions between mutations in an essential enzyme and genes associated with the proteostasis environment. These findings speak to the role of environmental and genotypic context in modulating higher-order epistasis, with direct implications for evolutionary theory, genetic modification technology, and efforts to manage antimicrobial resistance.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3