Abstract
AbstractThe prevalence of teamwork in contemporary science has raised new questions about collaboration networks and the potential impact on research outcomes. Previous studies primarily focused on pairwise interactions between scientists when constructing collaboration networks, potentially overlooking group interactions among scientists. In this study, we introduce a higher-order network representation using algebraic topology to capture multi-agent interactions, i.e., simplicial complexes. Our main objective is to investigate the influence of higher-order structures in local collaboration networks on the productivity of the focal scientist. Leveraging a dataset comprising more than 3.7 million scientists from the Microsoft Academic Graph, we uncover several intriguing findings. Firstly, we observe an inverted U-shaped relationship between the number of disconnected components in the local collaboration network and scientific productivity. Secondly, there is a positive association between the presence of higher-order loops and individual scientific productivity, indicating the intriguing role of higher-order structures in advancing science. Thirdly, these effects hold across various scientific domains and scientists with different impacts, suggesting strong generalizability of our findings. The findings highlight the role of higher-order loops in shaping the development of individual scientists, thus may have implications for nurturing scientific talent and promoting innovative breakthroughs.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Reference106 articles.
1. Fortunato S, Bergstrom C, Borner K, Evans J, Helbing D, Milojevic S, Petersen A, Radicchi F, Sinatra R, Uzzi B, Vespignani A, Waltman L, Wang D, Barabasi A (2018) Science of science. Science 359(1):6379
2. Zeng A, Shen Z, Zhou J, Wu J, Fan Y, Wang Y, Stanley H (2017) The science of science: from the perspective of complex systems. Phys Rep 714–715:1–73
3. Shrum W, Genuth J, Chompalov I (2007) Structures of scientific collaboration. MIT Press, Cambridge
4. Katz J, Martin B (1997) What is research collaboration? Res Policy 26(1):1–18
5. de Solla Price D (1963) Little science, big science. Columbia University Press, New York
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献