Evolutionary druggability: leveraging low-dimensional fitness landscapes towards new metrics for antimicrobial applications

Author:

Guerrero Rafael F.1ORCID,Dorji Tandin2,Harris Ra’Mal M.3,Shoulders Matthew D.3ORCID,Ogbunugafor C. Brandon3456ORCID

Affiliation:

1. Department of Biological Sciences, North Carolina State University

2. Department of Mathematics and Statistics, University of Vermont, Burlington, VT

3. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA

4. DDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT

5. Santa Fe Institute, Santa Fe, NM

6. Public Health Modeling Unit, Yale School of Public Health, New Haven, CT

Abstract

The term “druggability” describes the molecular properties of drugs or targets in pharmacological interventions and is commonly used in work involving drug development for clinical applications. There are no current analogues for this notion that quantify the drug-target interaction with respect to a given target variant’s sensitivity across a breadth of drugs in a panel, or a given drug’s range of effectiveness across alleles of a target protein. Using data from low-dimensional empirical fitness landscapes composed of 16 β-lactamase alleles and seven β-lactam drugs, we introduce two metrics that capture (i) the average susceptibility of an allelic variant of a drug target to any available drug in a given panel (“variant vulnerability”), and (ii) the average applicability of a drug (or mixture) across allelic variants of a drug target (“drug applicability”). Finally, we (iii) disentangle the quality and magnitude of interactions between loci in the drug target and the seven drug environments in terms of their mutation by mutation by environment (G x G x E) interactions, offering mechanistic insight into the variant variability and drug applicability metrics. Summarizing, we propose that our framework can be applied to other datasets and pathogen-drug systems to understand which pathogen variants in a clinical setting are the most concerning (low variant vulnerability), and which drugs in a panel are most likely to be effective in an infection defined by standing genetic variation in the pathogen drug target (high drug applicability).

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3