The Genetic Signature of Conditional Expression

Author:

Van Dyken J David1,Wade Michael J1

Affiliation:

1. Department of Biology, Indiana University, Bloomington, Indiana 47405

Abstract

Abstract Conditionally expressed genes have the property that every individual in a population carries and transmits the gene, but only a fraction, ϕ, expresses the gene and exposes it to natural selection. We show that a consequence of this pattern of inheritance and expression is a weakening of the strength of natural selection, allowing deleterious mutations to accumulate within and between species and inhibiting the spread of beneficial mutations. We extend previous theory to show that conditional expression in space and time have approximately equivalent effects on relaxing the strength of selection and that the effect holds in a spatially heterogeneous environment even with low migration rates among patches. We support our analytical approximations with computer simulations and delineate the parameter range under which the approximations fail. We model the effects of conditional expression on sequence polymorphism at mutation–selection–drift equilibrium, allowing for neutral sites, and show that sequence variation within and between species is inflated by conditional expression, with the effect being strongest in populations with large effective size. As ϕ decreases, more sites are recruited into neutrality, leading to pseudogenization and increased drift load. Mutation accumulation diminishes the degree of adaptation of conditionally expressed genes to rare environments, and the mutational cost of phenotypic plasticity, which we quantify as the plasticity load, is greater for more rarely expressed genes. Our theory connects gene-level relative polymorphism and divergence with the spatial and temporal frequency of environments inducing gene expression. Our theory suggests that null hypotheses for levels of standing genetic variation and sequence divergence must be corrected to account for the frequency of expression of the genes under study.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3