Eco-evolutionary dynamics of partially migratory metapopulations in spatially and seasonally varying environments

Author:

Haaland Thomas R.ORCID,Payo-Payo AnaORCID,Acker PaulORCID,Fortuna RitaORCID,Burthe Sarah J.ORCID,Ratikainen Irja I.ORCID,Daunt FrancisORCID,Reid Jane M.ORCID

Abstract

AbstractPredicting population responses to environmental changes requires understanding interactions among environmentally induced phenotypic variation, selection, demography and genetic variation, and thereby predicting eco-evolutionary dynamics emerging across diverse temporal and spatial scales. Partially migratory metapopulations (PMMPs), featuring seasonal coexistence of resident and migrant individuals across multiple spatially distinct subpopulations, have clear potential for complex spatio-seasonal eco-evolutionary dynamics through impacts of selection on migration on spatial population dynamics, and feedbacks resulting from ongoing micro-evolution. However, the key genetic and environmental conditions that maintain migratory polymorphisms, and eco-evolutionary dynamics of PMMPs under stochastic environmental variation and strong seasonal perturbations, have not yet been resolved. Accordingly, we present a general individual-based model that tracks eco-evolutionary dynamics in PMMPs inhabiting spatially structured, seasonally varying landscapes, with migration formulated as a quantitative genetic threshold trait. Our simulations show that such genetic and landscape structures, which commonly occur in nature, can readily produce a variety of stable partially migratory systems given diverse regimes of spatio-seasonal environmental variation. Typically, partial migration is maintained whenever sites differ in non-breeding season suitability resulting from variation in density-dependence, causing ‘ideal free’ non-breeding distributions where residents and migrants occur with frequencies that generate similar survival probabilities. Yet, stable partial migration can also arise without any fixed differences in non-breeding season density-dependence among sites, and even without density-dependence at all, through risk-spreading given sufficiently large stochastic environmental fluctuations among sites and years. Finally, we show that local non-breeding season mortality events, as could result from extreme climatic events, can generate eco-evolutionary dynamics that ripple out to affect breeding and non-breeding season space use of subpopulations throughout the PMMP, on both short and longer timeframes. Such effects result from spatially divergent selection on both the occurrence and destinations of migration. Our model thus shows how facultative seasonal migration can act as a key mediator of eco-evolutionary dynamics in spatially and seasonally structured environments, providing key steps towards predicting responses of natural partially migratory populations to ongoing changes in spatio-seasonal patterns of environmental variation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3