The evolution of seminal fluid gene expression and postmating reproductive isolation in Drosophila

Author:

Flacchi Carolina1,Capri Nicole1,Civetta Alberto1

Affiliation:

1. Department of Biology, University of Winnipeg , Winnipeg , Canada

Abstract

Abstract Seminal fluid protein (Sfp) genes show, in general, a higher rate of sequence divergence than genes from other categories, which is often attributed to forms of postcopulatory sexual selection or sexual conflict. Recently, the relaxation of selective constraints has been proposed as an alternative explanation for the rapid sequence evolution of Sfps and other genes with sex-limited expression. The expression of Sfp genes is a likely target of selection, but the evolution of differences in their expression levels is less understood. Here, we explore both polymorphism and divergence in Sfp gene expression between Drosophila melanogaster and Drosophila simulans, how selection might have influenced their expression, and whether changes in expression might trigger the evolution of reproductive isolating barriers. In our analysis, Sfp genes showed higher divergence, but not higher polymorphism, in expression than the average male reproductive glands gene. Sfp genes with reproductive-tissue-specific expression were enriched for both directional and stabilizing selection, while relaxed selection was the predominant mode of evolution among Sfp genes with any other nonreproductive tissue-specific or nontissue-specific expression. The knockdown of single genes known to affect intraspecific sperm competition, and with patterns of expression divergence and polymorphism suggestive of directional selection, was not enough to break down postmating reproductive isolation barriers between species. Our results identify the expression of male-specific Sfp genes as an enriched target of selection and suggest a complex molecular relationship between postcopulatory sexual selection on a single gene’s expression and its effect on the onset of speciation.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Reference78 articles.

1. Positive selection drives the evolution of the Acp29AB accessory gland protein in Drosophila;Aguadé,1999

2. Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila;Aguadé,1992

3. Molecular evolution of seminal proteins in field crickets;Andrés,2006

4. Sex-biased transcriptome evolution in Drosophila;Assis,2012

5. Insect seminal fluid proteins: Identification and function;Avila,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3