High-Density Linkage Maps Based on Genotyping-by-Sequencing (GBS) Confirm a Chromosome-Level Genome Assembly and Reveal Variation in Recombination Rate for the Pacific Oyster Crassostrea gigas

Author:

Yin Xiaoshen,Arias-Pérez Alberto,Kitapci Tevfik Hamdi,Hedgecock Dennis

Abstract

Abstract Studies of linkage and linkage mapping have advanced genetic and biological knowledge for over 100 years. In addition to their growing role, today, in mapping phenotypes to genotypes, dense linkage maps can help to validate genome assemblies. Previously, we showed that 40% of scaffolds in the first genome assembly for the Pacific oyster Crassostrea gigas were chimeric, containing single nucleotide polymorphisms (SNPs) mapping to different linkage groups. Here, we merge 14 linkage maps constructed of SNPs generated from genotyping-by-sequencing (GBS) methods with five, previously constructed linkage maps, to create a compendium of nearly 69 thousand SNPs mapped with high confidence. We use this compendium to assess a recently available, chromosome-level assembly of the C. gigas genome, mapping SNPs in 275 of 301 contigs and comparing the ordering of these contigs, by linkage, to their assembly by Hi-C sequencing methods. We find that, while 26% of contigs contain chimeric blocks of SNPs, i.e., adjacent SNPs mapping to different linkage groups than the majority of SNPs in their contig, these apparent misassemblies amount to only 0.08% of the genome sequence. Furthermore, nearly 90% of 275 contigs mapped by linkage and sequencing are assembled identically; inconsistencies between the two assemblies for the remaining 10% of contigs appear to result from insufficient linkage information. Thus, our compilation of linkage maps strongly supports this chromosome-level assembly of the oyster genome. Finally, we use this assembly to estimate, for the first time in a Lophotrochozoan, genome-wide recombination rates and causes of variation in this fundamental process.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3