Genetic diversity and genome-scale population structure of wild Indian major carp, Labeo catla (Hamilton, 1822), revealed by genotyping-by-sequencing

Author:

Sahoo Bismay,Das Gargee,Nandanpawar Priyanka,Priyadarshini Nirjharini,Sahoo Lakshman,Meher Prem Kumar,Udit Uday Kumar,Sundaray Jitendra Kumar,Das Paramananda

Abstract

Labeo catla (catla) is the second most commercially important and widely cultured Indian major carp (IMC). It is indigenous to the Indo-Gangetic riverine system of India and the rivers of Bangladesh, Nepal, Myanmar, and Pakistan. Despite the availability of substantial genomic resources in this important species, detailed information on the genome-scale population structure using SNP markers is yet to be reported. In the present study, the identification of genome-wide single nucleotide polymorphisms (SNPs) and population genomics of catla was undertaken by re-sequencing six catla populations of riverine origin from distinct geographical regions. DNA isolated from 100 samples was used to perform genotyping-by-sequencing (GBS). A published catla genome with 95% genome coverage was used as the reference for mapping reads using BWA software. From a total of 472 million paired-end (150 × 2 bp) raw reads generated in this study, we identified 10,485 high-quality polymorphic SNPs using the STACKS pipeline. Expected heterozygosity (He) across the populations ranged from 0.162 to 0.20, whereas observed heterozygosity (Ho) ranged between 0.053 and 0.06. The nucleotide diversity (π) was the lowest (0.168) in the Ganga population. The within-population variation was found to be higher (95.32%) than the among-population (4.68%) variation. However, genetic differentiation was observed to be low to moderate, with Fst values ranging from 0.020 to 0.084, and the highest between Brahmani and Krishna populations. Bayesian and multivariate techniques were used to further evaluate the population structure and supposed ancestry in the studied populations using the structure and discriminant analysis of principal components (DAPC), respectively. Both analyses revealed the existence of two separate genomic clusters. The maximum number of private alleles was observed in the Ganga population. The findings of this study will contribute to a deeper understanding of the population structure and genetic diversity of wild populations of catla for future research in fish population genomics.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3