Face DetectNet: face detection via fully-convolutional network

Author:

Lapko A.V.1,Lapko V.A.1

Affiliation:

1. Institute of Computational Modeling of the Siberian Branch of the Russian Academy of Sciences, Russia, Krasnoyarsk, Reshetnev Siberian State University of Science and Technology, Russia, Krasnoyarsk

Abstract

The paper deals with a new method of testing hypotheses for the distribution of multidimensional remote sensing spectral data. The proposed technique is based on the use of nonparametric algorithms for pattern recognition. Testing the hypothesis of the identity of two laws of distributions of multidimensional random variables is replaced by testing a hypothesis stating that the pattern recognition error equals 0.5. The application of this technique allows doing without the decomposition of the random variable domain into multidimensional intervals, which is typical for the Pearson criterion. Its effectiveness is confirmed by the results of testing the hypotheses of the distribution of spectral data of remote sensing in forestry. The analysis of the distribution laws for the following types of forestry is carried out: dark coniferous forest, damaged and dry forest stands. The initial information was obtained from the southern Siberia remote sensing data using six spectral channels of Landsat. The results of the research form a basis for a set of significant spectral features when dealing with forest condition monitoring.

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3