A method of sequentially generating a set of components of a multidimensional random variable using a nonparametric pattern recognition algorithm

Author:

Zenkov I.V., ,Lapko A.V.,Lapko V.A.,Kiryushina E.V.,Vokin V.N.,Bakhtina A.V., , , , , , , , ,

Abstract

We study in which way a priori information on the independence of random variables affects the approximation accuracy of a nonparametric estimate of the Rosenblatt–Parzen probability density. A new technique for generating sets of independent components of a multidimensional random variable is proposed. The methodology is based on testing the hypotheses of the independence of combinations of the multidimensional random variable components using a two-alternative nonparametric kernel algorithm for pattern recognition corresponding to the maximum likelihood criterion. Classes correspond to the domains of definition of the probability densities of sets of independent and dependent components of the multidimensional random variable. Nonparametric statistics of the kernel type are used to estimate the probability densities. The choice of the bandwidths of the kernel estimates of the probability densities is made from the condition of the minimum root-mean-square criterion. The sequential procedure for generating a set of independent components begins with the analysis of paired combinations of components of a multidimensional random variable. For each pair of components, the probability of an error in recognizing classes corresponding to the assumptions of independence and dependence of the considered components is estimated. A pair of components with the maximum difference between these errors is determined. If the errors obtained do not differ significantly, then there are no independent components in the considered multivariate random variable. If there is a significant difference in the probability estimates of class recognition errors, a pair of independent components is established. These components are included in a three-component set of a multidimensional random variable. The analysis of their combinations is carried out in the same way, following the above-described procedure. The process of generating the set of independent components is stopped when no reliable difference occurs any more between the probabilities of errors in recognizing situations belonging to the accepted classes. In this case, the previous set of independent components is the desired result. In contrast to the traditional methodology based on the Pearson criterion, the proposed approach allows us to bypass a problem of the decomposition of the range of values of random variables into multidimensional intervals. The method of generating a set of independent components of a multidimensional random variable is illustrated by the results of the analysis of spectral features of remote sensing data of forest tracts using space imagery from the Landsat-8 satellite.

Funder

Russian Foundation for Basic Research

Publisher

Samara National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Reference21 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3