Study of the Method for Verification of the Hypothesis on Independence of Two-Dimensional Random Quantities Using a Nonparametric Classifier
Author:
Publisher
Allerton Press
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Instrumentation
Link
https://link.springer.com/content/pdf/10.3103/S8756699021060078.pdf
Reference24 articles.
1. V. S. Pugachev, Theory of Probability and Mathematical Statistics (Fizmatlit, Moscow, 2002).
2. A. V. Lapko and V. A. Lapko, ‘‘Nonparametric algorithms of pattern recognition in the problem of testing a statistical hypothesis on identity of two distribution laws of random variables,’’ Optoelectron., Instrum. Data Process. 46, 545–550 (2010). https://doi.org/10.3103/S8756699011060069
3. A. V. Lapko and V. A. Lapko, ‘‘Comparison of empirical and theoretical distribution functions of a random variable on the basis of a nonparametric classifier,’’ Optoelectron., Instrum. Data Process. 48, 37–41 (2012). https://doi.org/10.3103/S8756699012010050
4. A. V. Lapko and V. A. Lapko, ‘‘A technique for testing hypotheses for distributions of multidimensional spectral data using a nonparametric pattern recognition algorithm,’’ Comput. Optics 43, 238–244 (2019). https://doi.org/10.18287/2412-6179-2019-43-2-238-244
5. A. V. Lapko and V. A. Lapko, ‘‘Testing the hypothesis of the independence of two-dimensional random variables using a nonparametric algorithm for pattern recognition,’’ Optoelectron., Instrum. Data Process. 57, 149–155 (2021). https://doi.org/10.3103/S8756699021020114
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Application of a nonparametric procedure for testing the hypothesis about the independence of random variables given a large amount of statistical data;Measurement Techniques;2024-01
2. Application of a nonparametric technique for testing the hypothesis of independence of random variables in conditions of a large volume of statistical data;Izmeritel`naya Tekhnika;2023-11-17
3. Comparison of Methods for Testing the Hypothesis of Independence of Random Variables Based on a Nonparametric Classifier and Pearson’s Chi-Squared Test;Optoelectronics, Instrumentation and Data Processing;2023-10
4. Modification of a Nonparametric Procedure for Testing the Hypothesis About the Distributions of Random Variables;Measurement Techniques;2023-07
5. Fast Selection of Bandwidths for Nonparametric Estimation of the Probability Density of a Two-Dimensional Random Variable with Dependent Components;Optoelectronics, Instrumentation and Data Processing;2023-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3