Affiliation:
1. Xinyang Agricultural Experiment Station of Yancheng City Yancheng China
2. Institute of Ensiling and Processing of Grass, College of Agro-grassland Science Nanjing Agricultural University Nanjing China
Abstract
Abstract
Aim
To explore the potential of whole-plant quinoa (WPQ) as a high-protein source for livestock feed, this study evaluated the effects of additives on the fermentation quality and bacterial community of high-moisture WPQ silage.
Methods and Results
High-moisture WPQ was ensiled with one of the following additives: untreated control (C), fibrolytic enzyme (E), molasses (M), LAB inoculant (L), a combination of fibrolytic enzyme and LAB inoculant (EL) and a combination of molasses and LAB inoculant (ML). The fermentation quality and bacterial community after 60 days of ensiling were analysed. Naturally fermented WPQ exhibited acetic acid-type fermentation dominated by enterobacteria, with low lactic acid content (37.0 g/kg DM), and high pH value (5.65), acetic acid (70.8 g/kg DM) and NH3-N production (229 g/kg TN). Adding molasses alone or combined with LAB inoculant shifted the fermentation pattern towards increased intensity of lactic acid fermentation, lowering the pH value (<4.56), contents of acetic acid (<46.7 g/kg DM) and NH3-N (<140 g/kg TN) and total abundance of enterobacteria (<16.0%), and increasing the lactic acid content (>60.5 g/kg DM), lactic/acetic acid ratio (>1.40) and the relative abundance of Lactobacillus (>83.0%).
Conclusions
The results suggested that the lack of fermentable sugar could be the main factor of restricting extensive lactic acid fermentation in WPQ silage. Supplementing fermentable sugar or co-ensiling with materials with high WSC content and low moisture content are expected to be beneficial strategies for producing high-quality WPQ silage.
Significance and Impact of Study
High biomass production and high protein content make WPQ to be an ideal forage source for livestock feed. Results of this study revealed the restricting factor for extensive lactic acid fermentation in WPQ silage, which could be helpful in producing high-quality WPQ silage.
Funder
Agricultural Innovation Fund of Jiangsu Province
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,General Medicine,Biotechnology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献