Using null models to decipher bacterial assembly mechanisms in oat silages harvested from southern China

Author:

Dong Zhihao,Fang Di,Hu Shiwei,Zhao Jie,Wang Siran,Li Junfeng,Shao Tao

Abstract

Abstract Background Deciphering the assembly rules of microbial communities is vital for a mechanistic understanding of the general principles driving microbiome structures and functions. In this study, a null modeling-based framework was implemented to infer the assembly rules of bacterial community in oat silages harvested in southern China starting from the grain-filling stage through to full ripening. Results Most silages displayed “inferior” or “very inferior” fermentation quality. The fermentation qualities of silages tended to further decrease with the delay of harvest. Lactobacillus, Pediococcus, unclassified_f_Enterobacteriaceae, and Hafnia–Obesumbacterium constituted the predominated genera in silages. Delaying harvest increased the proportions of Hafnia–Obesumbacterium. Null model analysis revealed that stochastic processes were the primary contributor to the assembly of rare subcommunity during silage fermentation. The succession of abundant subcommunity was controlled both by stochastic and deterministic processes. Deterministic processes, more specifically, heterogeneous selection, were more prominent in the assembly of abundant bacteria in silages with the delay of harvest. Linear regression analysis indicated the important roles of DM, WSC and pH in the assembly of abundant subcommunity. Conclusion This study, from the ecological perspectives, revealed the ecological processes controlling the bacterial community assembly in silage, providing new insights into the mechanisms underlying the construction of silage bacterial community. Graphical Abstract

Funder

Jiangsu Agricultural Science and Technology Innovation Found

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3