Affiliation:
1. Laboratory for Manufacturing Systems and Automation Department of Mechanical Engineering and Aeronautics University of Patras Patras Greece
Abstract
AbstractVirtual reality (VR) technology is increasingly vital in various sectors, particularly for simulating real environments in training and teleoperation. However, it has primarily focused on static, controlled settings like indoor industrial shopfloors. This paper proposes a novel method for remotely controlling robots in hazardous environments safely, without compromising efficiency. Operators can execute tasks from remote locations ensuring continuity regardless of distance. Real‐time efficiency is achieved by updating the virtual environment from on‐site sensors and mirroring the real environment, utilizing 3D reconstruction, Google Images, and video streams. Communication between VR and the remote robot is facilitated through a remote robot operating system connection. The efficacy of this concept will be validated through real road maintenance interventions.