A feature extraction and deep learning approach for network traffic volume prediction considering detector reliability

Author:

Zou Xiexin1,Chung Edward1,Zhou Yue1,Long Meng1,Lam William H. K.1

Affiliation:

1. Department of Electrical Engineering The Hong Kong Polytechnic University Hong Kong China

Abstract

AbstractAccurate traffic volume prediction plays a crucial role in urban traffic control by relieving congestion through improved regulation of traffic volume. Network‐level traffic volume prediction and detector failure have rarely been considered in the literature. This paper proposes a framework based on long short‐term memory and the multilayer perceptron that can predict network‐level traffic volumes even with detector failure. A profile model learns the profile of the detector's signature (traffic pattern). Detectors with similar profiles are considered to have similar traffic patterns and are grouped into a cluster. Failed detectors can obtain reference information from similar detectors in the same cluster without additional information. A predictive model is developed for each cluster. The proposed method is validated using Japan Road Traffic Information Center data for three cities. The computational results indicate that the proposed method performs well both on typical days and atypical days (the COVID‐19 lockdown period and the 2021 Tokyo Olympics). Further, it considers detector reliability: the increase in mean absolute error is less than 1 veh/5 min when the probability of detector failure increases to 20%.

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3