Computing‐efficient video analytics for nighttime traffic sensing

Author:

Lashkov Igor1,Yuan Runze2,Zhang Guohui1

Affiliation:

1. Department of Civil and Environmental Engineering University of Hawaii Honolulu Hawaii USA

2. Department of Automation Tsinghua University Beijing China

Abstract

AbstractThe training workflow of neural networks can be quite complex, potentially time‐consuming, and require specific hardware to accomplish operation needs. This study presents a novel analytical video‐based approach for vehicle tracking and vehicle volume estimation at nighttime using a monocular traffic surveillance camera installed over the road. To build this approach, we employ computer vision‐based algorithms to detect vehicle objects, perform vehicle tracking, and vehicle counting in a predefined detection zone. To address low‐illumination conditions, we adapt and employ image noise reduction techniques, image binary conversion, image projective transformation, and a set of heuristic reasoning rules to extract the headlights of each vehicle, pair them belonging to the same vehicle, and track moving candidate vehicle objects continuously across a sequence of video frames. The robustness of the proposed method was tested in various scenarios and environmental conditions using a publicly available vehicle dataset as well as own labeled video data.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3