Unidirectional and Bidirectional LSTM Models for Short-Term Traffic Prediction

Author:

Abduljabbar Rusul L.1ORCID,Dia Hussein1,Tsai Pei-Wei2

Affiliation:

1. Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, Australia

2. Department of Computer Science and Software Engineering, Swinburne University of Technology, Melbourne, Australia

Abstract

This paper presents the development and evaluation of short-term traffic prediction models using unidirectional and bidirectional deep learning long short-term memory (LSTM) neural networks. The unidirectional LSTM (Uni-LSTM) model provides high performance through its ability to recognize longer sequences of traffic time series data. In this work, Uni-LSTM is extended to bidirectional LSTM (BiLSTM) networks which train the input data twice through forward and backward directions. The paper presents a comparative evaluation of the two models for short-term speed and traffic flow prediction using a common dataset of field observations collected from multiple freeways in Australia. The results showed BiLSTM performed better for variable prediction horizons for both speed and flow. Stacked and mixed Uni-LSTM and BiLSTM models were also investigated for 15-minute prediction horizons resulting in improved accuracy when using 4-layer BiLSTM networks. The optimized 4-layer BiLSTM model was then calibrated and validated for multiple prediction horizons using data from three different freeways. The validation results showed a high degree of prediction accuracy exceeding 90% for speeds up to 60-minute prediction horizons. For flow, the model achieved accuracies above 90% for 5- and 10-minute prediction horizons and more than 80% accuracy for 15- and 30-minute prediction horizons. These findings extend the set of AI models available for road operators and provide them with confidence in applying robust models that have been tested and evaluated on different freeways in Australia.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference46 articles.

1. Dynamics of drivers’ route choice decisions under advanced traveller information systems;H. Dia;Road & Transport Research,2001

2. A deep learning approach for freeway vehicle speed and flow prediction;R. Abduljabbar

3. January. Simulation of arterial incident detection using neural networks;K. Thomas

4. EVALUATION OF A DYNAMIC SIGNAL OPTIMISATION CONTROL MODEL USING TRAFFIC SIMULATION

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3