Tree mycorrhizal type mediates the responses of foliar stoichiometry and tree growth to functionally dissimilar neighbours in a subtropical forest experiment

Author:

Wang Tao12ORCID,Chen Xinli3ORCID,Zhao Xue4,Sardans Jordi56,Peñuelas Josep56,Da Minghui12,Fu Yanrong12,Yu Zaipeng12,Wan Xiaohua12ORCID,Shi Xiuzhen12,Huang Zhiqun12ORCID

Affiliation:

1. Institute of Geographical Science Fujian Normal University Fuzhou China

2. Key Laboratory of Humid Subtropical Eco‐Geographical Process of Ministry of Education Fujian Normal University Fuzhou China

3. Department of Renewable Resources University of Alberta Edmonton Alberta Canada

4. School of Environment and Science Griffith University Nathan Queensland Australia

5. Global Ecology Unit, CSIC CREAF‐CSIC‐UAB Barcelona Catalonia Spain

6. CREAF Cerdanyola del Vallès Catalonia Spain

Abstract

Abstract Plant nutrient stoichiometry is of critical importance to productivity and nutrient cycling in terrestrial ecosystems. The impacts of tree species diversity on productivity have been well studied at the stand level. However, it is unclear how neighbourhood interactions impact the foliar nutrient stoichiometry of trees at the neighbourhood scale and how plant mycorrhizal associations can mediate such effects. We randomly selected eight tree species from a large‐scale biodiversity experiment with mixtures up to 32 tree species in subtropical China to assess the effects of species richness, phylogenetic and trait dissimilarities and competition on the foliar nutrient stoichiometry of focal trees associated with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. We further investigated whether neighbourhood diversity can alter focal tree growth by regulating C:N:P stoichiometry. Neighbourhood species richness had no significant impact on the foliar C:N, N:P or C:P for both AM and EM trees. Increased neighbourhood phylogenetic dissimilarity significantly decreased the foliar N:P and C:P of AM trees but did not affect those of EM tree species. Foliar C:N, N:P and C:P of AM trees decreased with increasing neighbour trait (specific leaf area, root diameter, wood density dissimilarity, total trait) dissimilarities, while those of EM trees increased or remained unchanged. The increase of the neighbourhood competition index resulted in an increase in the foliar C:N of AM tree species but not EM tree species. The structural equation model analysis revealed that the increase of neighbourhood phylogenetic dissimilarity and functional trait dissimilarity indirectly enhanced tree growth of AM trees by decreasing foliar C:N. Conversely, the increase of neighbourhood‐specific root length and wood density dissimilarity indirectly reduced the growth of EM trees by increasing foliar N:P. Synthesis. Our results indicate that neighbourhood trait dissimilarity regulated tree foliar stoichiometry and growth performance, but the effects depended on the mycorrhizal type of trees. Our findings highlight the importance of tree mycorrhizal associations for better understanding the relationship between plant diversity and ecosystem functions. Read the free Plain Language Summary for this article on the Journal blog.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3