Novel climate–fire–vegetation interactions and their influence on forest ecosystems in the western USA

Author:

Liang Shuang1ORCID,Hurteau Matthew D.2ORCID

Affiliation:

1. College of Life Sciences Zhejiang University Hangzhou China

2. Department of Biology University of New Mexico Albuquerque New Mexico USA

Abstract

Abstract Climate, disturbance, vegetation response and their interaction are key factors in predicting the distribution and function of ecosystems across landscapes. A range of factors, operating through different pathways, are amplifying the feedbacks in this three‐way interaction. In the western USA, the relative strength of the influence of climate versus vegetation on fire activity varies spatially, realizing a diversity of fire regimes and fire‐selected species traits under historical conditions of climate–fire–vegetation interactions. Human intervention, via land use and fire‐exclusion, has homogenized frequent‐fire‐adapted forests in terms of structure and composition. Climate change is reinforcing the homogenization directly via increasing temperatures and drought and indirectly through climate‐driven tree mortality. The net effect will be forming novel climate–fire–vegetation interactions that act to homogenize fire regimes and catalyse large‐scale forest loss. While long‐term persistence of tree species in a given location may not be possible due to directional change of climate, slowing the rate of wildfire‐driven forest cover loss and maximizing the in‐situ persistence of a diversity of species will allow forest ecosystems to respond more incrementally to changing climate and provide an opportunity for ecosystem reassembly to occur from a large pool of species. As climate continues to change, management to resist wildfire‐driven forest cover loss may hinge on reducing forest density and creating a higher level of heterogeneity to reach the resistance and resilience exhibited by pre‐fire‐exclusion forests. Management operations should better leverage disturbance while strategically deploying silvicultural treatments to increase managed and prescribed fire. Further research is needed to improve our capacity for quantifying key mechanisms and system responses involved in the climate–fire–vegetation interactions and predicting how best to allocate resources to manage for functional forests. Read the free Plain Language Summary for this article on the Journal blog.

Funder

National Natural Science Foundation of China

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3