Effects of Forest Fires on Boreal Permafrost and Soil Microorganisms: A Review

Author:

Liu Jing1,Li Xiaoying2ORCID,Xu Tao1,Han Yilun1,Li Jingtao1,Shen Yang1,Chen Kui1

Affiliation:

1. Key Laboratory of Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China

2. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

The frequency of forest fires has increased dramatically due to climate change. The occurrence of forest fires affects the carbon and nitrogen cycles and react to climate change to form a positive feedback mechanism. These effects further impact the distribution of microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) and the soil microbial community structure. In addition, permafrost degradation can significantly affect the microorganisms in the soil. Based on these findings, this review examines the effects of fire intensity and post-fire recovery time on permafrost, the soil microbial community, MBC, MBN, and their interrelationships. This review demonstrated that (1) fires alter the condition of surface vegetation, reduce the organic layer thickness, redistribute snow, accelerate permafrost degradation, and even lead to permanent changes, where the restoration of the pre-fire state would require several decades or even centuries; (2) soil microbial community structure, soil MBC, and MBN negatively correlate with fire intensity, and the effects become more pronounced with increasing fire intensity; and (3) the structural diversity and stability of the soil microbial community were improved with time, and the amount of MBC and MBN increases as the years after a fire go by; it would still take more than ten years to recover to the pre-fire level. However, the relationship between permafrost degradation and soil microbes after forest fires is still unclear due to a lack of quantitative research on the mechanisms underlying the changes in soil microorganisms resulting from fire-induced permafrost degradation. Therefore, expanding quantitative studies and analyses of the mechanisms of interactions between forest fires, permafrost, and soil microorganisms can provide a scientific basis for understanding ecosystem carbon pools and dual-carbon targets in Arctic–boreal permafrost regions.

Funder

National Natural Science Foundation of China

Heilongjiang Excellent Youth Fund

State Key Laboratory of Frozen Soils Engineerin

Fundamental Research Fund for the Central Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3