A 20-Year Ecotone Study of Pacific Northwest Mountain Forest Vulnerability to Changing Snow Conditions

Author:

Lookingbill Todd R.1ORCID,DuPuy Jack1,Jacobs Ellery1,Gonzalez Matteo1,Kostadinov Tihomir S.2ORCID

Affiliation:

1. Department of Geography, Environment and Sustainability, University of Richmond, Richmond, VA 23173, USA

2. Department of Liberal Studies, California State University San Marcos, San Marcos, CA 92096, USA

Abstract

(1) Background: Global climate change is expected to significantly alter growing conditions along mountain gradients. Landscape ecological patterns are likely to shift significantly as species attempt to adapt to these changes. We evaluated the extent to which spatial (elevation and canopy cover) and temporal (decadal trend and El Niño–Southern Oscillation/Pacific Decadal Oscillation) factors impact seasonal snowmelt and forest community dynamics in the Western Hemlock–True Fir ecotone region of the Oregon Western Cascades, USA. (2) Methods: Tsuga heterophylla and Abies amabilis seedling locations were mapped three times over 20 years (2002–2022) on five sample transects strategically placed to cross the ecotone. Additionally, daily ground temperature readings were collected over 10 years for the five transects using 123 data loggers to estimate below-canopy snow metrics. (3) Results: Based on validation using time-lapse cameras, the data loggers proved highly reliable for estimating snow cover. The method reported fewer days of snow cover as compared to meteorological station-based snow products for the region, emphasizing the importance of direct under-canopy field observations of snow. Snow season variability was most significantly impacted temporally by cyclical ENSO/PDO climate patterns and spatially by differences in canopy cover within the ecotone. The associated seedling analysis identified clear sorting of species by elevation within the ecotone but reflected a lack of a long-term trend, as species dominance in the seedling strata did not significantly shift along the elevation gradient over the 20-year study. (4) Conclusions: The data logger-based approach provided estimates of snow cover at ecologically significant locations and fine enough spatial resolutions to allow for the study of forest regeneration dynamics. The results highlight the importance of long-term, understory snow measurements and the influence of climatic oscillations in understanding the vulnerability of mountain areas to the changing climate.

Funder

University of Richmond School of Arts and Sciences

Associated Colleges of the South Andrew W. Mellon Environmental Fellowship

H.J. Andrews Experimental Forest and Long-Term Ecological Research (LTER) program

California State University San Marcos

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3