Developmental factors influencing bone strength in precocial mammals: An infant pig model

Author:

Magrini Samantha H.1,Mossor Angela M.12,German Rebecca Z.12,Young Jesse W.12ORCID

Affiliation:

1. School of Biomedical Sciences Kent State University Kent Ohio USA

2. Department of Anatomy and Neurobiology Northeast Ohio Medical University (NEOMED) Rootstown Ohio USA

Abstract

AbstractMost vertebrates are precocial in locomotion, able to walk and run soon after birth. Precociality requires a bony skeleton of sufficient strength to resist mechanical loading during early locomotor efforts. The aim of this study was to use an animal model—the preterm infant pig—to investigate some of the proximate factors that might determine variation in bone strength in precocial animals. Based on the prior literature, we tested the null predictions that skeletal integrity would be significantly compromised by truncated gestation (i.e., preterm birth) and reduced body mass at birth. We generated a suite of both morphometric measures (tissue mineral density and cross‐sectional geometry) and performance‐related metrics (ability to resist loading, deformation, and fracture during three‐point bending tests) of the appendicular skeleton of preterm and full‐term infant pigs. Results showed that very few measures in our ontogenetic infant pig sample significantly varied with either gestation length or birth mass. Overall, our results contribute to a growing body of literature demonstrating the early functional capacity of the precocial infant musculoskeletal system and suggest that bone strength in perinatal precocial mammals may be robust to the factors shown to compromise skeletal integrity in more altricial taxa.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Wiley

Subject

Cell Biology,Developmental Biology,Molecular Biology,Ecology, Evolution, Behavior and Systematics,Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3