Effects of Development on Bone Mineral Density and Mechanical Properties in the Aquatic Frog, Xenopus Laevis, and a Terrestrial Frog, Lithobates Catesbianus

Author:

Kinsey Chase T1ORCID,Ratz Caleb1,Adams Danielle1,Webber-Shultz Amani2,Blob Richard1ORCID

Affiliation:

1. Department of Biological Sciences, Clemson University , 118 Long Hall Clemson, SC 29634 , USA

2. Department of Biological Sciences, New Jersey Institute of Technology , Newark, NJ 07102 , USA

Abstract

Synopsis The limb bones of vertebrates have a critical role in supporting the weight of the body and transmitting forces that power locomotion. The loads that limb bones experience can vary in association with a range of factors, including locomotor environment or developmental stage. Limbed vertebrates that are habitually found in environments with low locomotor loads (e.g., water) might be predicted to also exhibit limb bones with less elevated mechanical properties, such as yield stiffness and yield stress. Frogs provide a distinctive case, in which these ideas can be tested as they experience changes in both locomotor style and habitat as they develop. However, while many frog taxa shift from aquatic to terrestrial habitats as they metamorphose, some lineages, such as pipids, maintain an aquatic lifestyle even after metamorphosis, providing a comparative framework for the effects of habitat shifts on developing limbs in vertebrates. This study compares the material composition and mechanical properties of the femur between frog species that are aquatic specialists (Xenopus laevis) vs generalists that spend considerable time both on land and in water (Lithobates catesbeianus) as they transition from metamorphic tadpoles to fully grown adults. MicroCT scanning was used to determine changes in bone density related to developmental stage and hindlimb use during swimming. Microindentation was then used to collect hardness values from the cortical bone of each femur, which was used to evaluate bone material properties. We found that aquatic frogs had less overall bone mineral density (BMD) than terrestrial frogs and that BMD was more elevated in the cortical region of the diaphysis than trabeculae and distal and proximal epiphyses. Despite its less elevated BMD, bone mechanical properties were not significantly different in aquatic specialist X. laevis than in more terrestrial L. catesbeianus. Our results suggest that the limb bones of aquatic frogs may experience compensatory effects through development to offset their lower BMD. Furthermore, changes in bone density and material properties across development may help to explain some of the differences in locomotor performance found between aquatic and terrestrial metamorphic frogs, providing insight into how environmental factors might correlate with bone ossification.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3