A novel scoring model for predicting efficacy and guiding individualised treatment in immune thrombocytopaenia

Author:

Xu Min1,Liu Jiachen1,Huang Linlin1,Shu Jinhui1,Wei Qiuzhe1,Hu Yu12ORCID,Mei Heng12ORCID

Affiliation:

1. Institute of Haematology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei China

2. Hubei Clinical and Research Center of Thrombosis and Hemostasis Wuhan Hubei China

Abstract

SummaryDespite diverse therapeutic options for immune thrombocytopaenia (ITP), drug efficacy and selection challenges persist. This study systematically identified potential indicators in ITP patients and followed up on subsequent treatment. We initially analysed 61 variables and identified 12, 14, and 10 candidates for discriminating responders from non‐responders in glucocorticoid (N = 215), thrombopoietin receptor agonists (TPO‐RAs) (N = 224), and rituximab (N = 67) treatments, respectively. Patients were randomly assigned to training or testing datasets and employing five machine learning (ML) models, with eXtreme Gradient Boosting (XGBoost) area under the curve (AUC = 0.89), Decision Tree (DT) (AUC = 0.80) and Artificial Neural Network (ANN) (AUC = 0.79) selected. Cross‐validated with logistic regression and ML finalised five variables (baseline platelet, IP‐10, TNF‐α, Treg, B cell) for glucocorticoid, eight variables (baseline platelet, TGF‐β1, MCP‐1, IL‐21, Th1, Treg, MK number, TPO) for TPO‐RAs, and three variables (IL‐12, Breg, MAIPA−) for rituximab to establish the predictive model. Spearman correlation and receiver operating characteristic curve analysis in validation datasets demonstrated strong correlations between response fractions and scores in all treatments. Scoring thresholds SGlu ≥ 3 (AUC = 0.911, 95% CI, 0.865–0.956), STPO‐RAs ≥ 5 (AUC = 0.964, 95% CI 0.934–0.994), and SRitu = 3 (AUC = 0.964, 95% CI 0.915–1.000) indicated ineffectiveness in glucocorticoid, TPO‐RAs, and rituximab therapy, respectively. Regression analysis and ML established a tentative and preliminary predictive scoring model for advancing individualised treatment.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3