Using fusion effects to decrease uncertainty in distance sampling models when collating data from different surveys

Author:

Plard Floriane1ORCID,Araújo Hélder2,Astarloa Amaia3,Louzao Maite3,Saavedra Camilo4,Bonales José Antonio Vazquez4,Pierce Graham John5,Authier Matthieu16

Affiliation:

1. Observatoire Pelagis UAR 3462, CNRS‐La Rochelle Université La Rochelle France

2. ECOMARE & Department of Biology Campus de Santiago, Universidade de Aveiro Aveiro Portugal

3. AZTI Marine Research, Basque Research and Technology Alliance (BRTA) Pasaia Spain

4. Instituto Español de Oceanografía, IEO‐CSIC, Centro Oceanográfico de Vigo Vigo Spain

5. Departamento de Ecología y Recursos Marinos Instituto de Investigaciones Marinas (CSIC) Vigo Spain

6. ADERA Pessac France

Abstract

AbstractEstimates of population abundance are required to study the impacts of human activities on populations and assess their conservation status. Despite considerable effort to improve data collection, uncertainty around estimates of cetacean densities can remain large. A fundamental concept underlying distance sampling is the detection function. Here we focus on reducing the uncertainty in the estimation of detection function parameters in analyses combining data sets from multiple surveys, with known effects on the precision of density estimates. We developed detection functions using infinite mixture models that can be applied on data collating multiple species and/or surveys. These models enable automatic clustering by fusing the species and surveys with similar detection functions. We present a simulation analysis of a multisurvey data set in a Bayesian framework where we demonstrated that distance sampling models including fusion effects showed lower uncertainty than classical distance sampling models. We illustrated the benefits of this new model using data of line transect surveys from the Bay of Biscay and Iberian Coast. Future estimates of abundance using conventional distance sampling models on large multispecies surveys or on data sets combining multiple surveys could benefit from this new model to provide more precise density estimates.

Funder

Directorate-General for Environment

Office Français de la Biodiversité

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3