Mitigating, monitoring and assessing the effects of anthropogenic sound on beaked whales

Author:

Barlow Jay,Gisiner Robert

Abstract

Certain anthropogenic sounds are widely believed to cause strandings of beaked whales, but their impacts on beaked whale populations are not known and methods for mitigating their effects are largely untested. The sound sources that have been coincident with beaked whale strandings are military, mid-frequency sonar (2-10kHz) and airgun arrays, both of which are used widely throughout the world for defence and geophysical exploration, respectively and for which alternative technologies are not readily available. Avoidance of beaked whale habitats is superficially a straightforward means of reducing the potential effects, but beaked whales are widely distributed and can be found in virtually all deep-water marine habitats that are free of ice. Some areas of high beaked whale abundance have been identified, but the geographic distribution is poorly known for most species. Beaked whales are both visually and acoustically difficult to detect. Commonly used mitigation measures (e.g. ‘ramp-up’ and ‘detection-modification-avoidance’) have not been assessed for their effectiveness. Surveys to detect population-level impacts would likely require many years of regular monitoring and for most areas where beaked whale strandings have occurred, there are no pre-exposure estimates of population sizes. Risk assessment models can be used to estimate the sound levels to which beaked whales might be exposed under a variety of scenarios, however, the lack of information on the causal mechanism for soundrelated beaked whale strandings makes it difficult to identify exposure levels that would warrant mitigative actions. Controlled exposure experiments, which measure the behavioural responses of animals to fully characterised sound sources, may hold the greatest potential for understanding the behavioural responses of beaked whales to sound and for designing mitigation methods to avoid future impacts.

Publisher

International Whaling Commission

Subject

Animal Science and Zoology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3