Assessment of probiotic intervention for control of biofilm former Escherichia coli isolates of animal‐origin foods

Author:

Sharan Manjeet1,Dhaka Pankaj1ORCID,Bedi Jasbir Singh1,Mehta Nitin2,Singh Randhir1

Affiliation:

1. Centre for One Health, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India

2. Department of Livestock Products Technology, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India

Abstract

AbstractThe study investigates the efficacy of lactic acid bacteria (LAB) strains (Lactobacillus rhamnosus and Lactobacillus casei) in combating Escherichia coli biofilms by determining antibacterial, anti‐biofilm activity, auto‐aggregation, and co‐aggregation assay. The study included 115 E. coli isolates from milk (n = 36), chicken meat (n = 33), and chicken eggs (n = 46). Among 115 E. coli isolates, 22.61% were strong biofilm formers. The LAB strain, L. rhamnosus exhibited a 28.47 mm mean antibacterial inhibition zone, an average reduction of 51.22% in biofilm growth, 55.46% auto‐aggregation, and 41.57% co‐aggregation with E. coli. Similarly, L. casei demonstrated a 21.55 mm mean antibacterial inhibition zone, an average reduction of 36.74% in biofilm growth, 45.23% auto‐aggregation, and 38.74% co‐aggregation with E. coli isolates. Both strains individually and in combination demonstrate substantial reductions in biofilm growth, with L. rhamnosus observed to be more effective than L. casei. Scanning electron microscopy provides valuable insights into the structural aspects of the probiotic impact on diminishing E. coli biofilm. Probiotics' ability to auto‐aggregate and co‐aggregate with pathogenic strains serves as an initial screening method for identifying suitable probiotic bacteria. In conclusion, the results underscore the efficacy of specific LAB strains in combating E. coli biofilm formation. This study provides a basis for future investigations into LAB's capacity to mitigate biofilm‐related hurdles and strengthen microbial management protocols within food processing settings or relevant food substrates.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3