A hybrid adaptive iterated local search heuristic for the maximal covering location problem

Author:

Máximo Vinícius R.1,Cordeau Jean‐François2,Nascimento Mariá C. V.3ORCID

Affiliation:

1. Instituto de Ciência e Tecnologia Universidade Federal de São Paulo (UNIFESP) Av. Cesare M. G. Lattes, 1201, Eugênio de Mello São José dos Campos‐SP CEP: 12247‐014 Brazil

2. HEC Montréal and GERAD 3000 chemin de la Côte‐Sainte‐Catherine Montréal H3T 2A7 Canada

3. Divisão de Ciência da Computação (IEC) Instituto Tecnológico de Aeronáutica (ITA) Praça Marechal Eduardo Gomes, 50, Vila das Acácias São José dos Campos‐SP CEP 12228‐900 Brazil

Abstract

AbstractAdaptive iterated local search (AILS) is a recently proposed metaheuristic paradigm that focuses on adapting the diversity control of iterated local search by online learning mechanisms. It has been successfully applied to the capacitated vehicle routing problem (CVRP) and the heterogeneous vehicle routing problem. Hybridizing it with path relinking (PR) has further improved the intensification of the method for the CVRP, providing outstanding results. However, the potential of this metaheuristic has not yet been investigated on other combinatorial optimization problems, such as location problems. In this paper, we develop a version of AILS for the maximal covering location problem (MCLP). This problem consists of locating a number of facilities to maximize the covered customer demand, where a given facility location can meet the demand of customers located within a coverage radius. Experiments on large‐scale instances of the MCLP indicate that AILS hybridized with PR, called AILS‐PR, outperforms the state‐of‐the‐art metaheuristic.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Management of Technology and Innovation,Management Science and Operations Research,Strategy and Management,Computer Science Applications,Business and International Management

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3