Affiliation:
1. National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science Chinese Academy of Agricultural Sciences Beijing China
2. The State Key Laboratory of Plant Cell and Chromosome Engineering Institute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing China
3. Triticeae Research Institute Sichuan Agricultural University Chengdu China
Abstract
SummaryPlant breeding is constrained by trade‐offs among different agronomic traits by the pleiotropic nature of many genes. Genes that contribute to two or more favourable traits with no penalty on yield are rarely reported, especially in wheat. Here, we describe the editing of a wheat auxin response factor TaARF12 by using CRISPR/Cas9 that rendered shorter plant height with larger spikes. Changes in plant architecture enhanced grain number per spike up to 14.7% with significantly higher thousand‐grain weight and up to 11.1% of yield increase under field trials. Weighted Gene Co‐Expression Network Analysis (WGCNA) of spatial–temporal transcriptome profiles revealed two hub genes: RhtL1, a DELLA domain‐free Rht‐1 paralog, which was up‐regulated in peduncle, and TaNGR5, an organ size regulator that was up‐regulated in rachis, in taarf12 plants. The up‐regulation of RhtL1 in peduncle suggested the repression of GA signalling, whereas up‐regulation of TaNGR5 in spike may promote GA response, a working model supported by differential expression patterns of GA biogenesis genes in the two tissues. Thus, TaARF12 complemented plant height reduction with larger spikes that gave higher grain yield. Manipulation of TaARF12 may represent a new strategy in trait pyramiding for yield improvement in wheat.
Funder
National Basic Research Program of China
National Natural Science Foundation of China
Subject
Plant Science,Agronomy and Crop Science,Biotechnology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献