New semi‐dwarfing alleles with increased coleoptile length by gene editing of gibberellin 3‐oxidase 1 using CRISPR‐Cas9 in barley (Hordeum vulgare L.)

Author:

Cheng Jingye12,Hill Camilla2,Han Yong3ORCID,He Tianhua2,Ye Xingguo4ORCID,Shabala Sergey15,Guo Ganggang4ORCID,Zhou Meixue1,Wang Ke4ORCID,Li Chengdao23ORCID

Affiliation:

1. Tasmanian Institute of Agriculture University of Tasmania Hobart TAS Australia

2. Western Crop Genetics Alliance, Food Futures Institute, College of Science, Health, Engineering and Education Murdoch University Murdoch WA Australia

3. Agriculture and Food, Department of Primary Industries and Regional Development South Perth WA Australia

4. Institute of Crop Science Chinese Academy of Agricultural Sciences Beijing China

5. School of Biological Science University of Western Australia Perth WA Australia

Abstract

SummaryThe green revolution was based on genetic modification of the gibberellin (GA) hormone system with “dwarfing” gene mutations that reduces GA signals, conferring shorter stature, thus enabling plant adaptation to modern farming conditions. Strong GA‐related mutants with shorter stature often have reduced coleoptile length, discounting yield gain due to their unsatisfactory seedling emergence under drought conditions. Here we present gibberellin (GA) 3‐oxidase1 (GA3ox1) as an alternative semi‐dwarfing gene in barley that combines an optimal reduction in plant height without restricting coleoptile and seedling growth. Using large‐scale field trials with an extensive collection of barley accessions, we showed that a natural GA3ox1 haplotype moderately reduced plant height by 5–10 cm. We used CRISPR/Cas9 technology, generated several novel GA3ox1 mutants and validated the function of GA3ox1. We showed that altered GA3ox1 activities changed the level of active GA isoforms and consequently increased coleoptile length by an average of 8.2 mm, which could provide essential adaptation to maintain yield under climate change. We revealed that CRISPR/Cas9‐induced GA3ox1 mutations increased seed dormancy to an ideal level that could benefit the malting industry. We conclude that selecting HvGA3ox1 alleles offers a new opportunity for developing barley varieties with optimal stature, longer coleoptile and additional agronomic traits.

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3