COBL7 is required for stomatal formation via regulation of cellulose deposition in Arabidopsis

Author:

Ge Shengchao1ORCID,Sun Pengyue1ORCID,Wu Wenjuan2ORCID,Chen Xinhang1,Wang Yifei1ORCID,Zhang Min1,Huang Jirong2ORCID,Liang Yun‐Kuan1ORCID

Affiliation:

1. State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences Wuhan University Wuhan 430072 China

2. Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences Shanghai Normal University Shanghai 200234 China

Abstract

Summary As a key regulator of plant photosynthesis, water use efficiency and immunity, stomata are specialized cellular structures that adopt defined shapes. However, our knowledge about the genetic players of stomatal pore formation and stomatal morphogenesis remains limited. Forward genetic screening, positional cloning, confocal and electron microscopy, physiological and pharmacological assays were employed for isolation and characterization of mutants and genes. We identified a mutant, dsm1, with impaired cytokinesis and deformed stomata. DSM1 is highly expressed in guard mother cells and guard cells, and encodes COBRA‐LIKE 7 (COBL7), a plant‐specific glycosylphosphatidylinositol (GPI)‐anchored protein. COBRA‐LIKE 7 and its closest homologue, COBL8, are first enriched on the forming cell plates during cytokinesis, and then their subcellular distribution and abundance change are correlated with the progressive stages of stomatal pore formation. Both COBL7 and COBL8 possess an ability to bind cellulose. Perturbing the expression of COBL7 and COBL8 leads to a decrease in cellulose content and inhibition of stomatal pore development. Moreover, we found that COBL7, COBL8 and CSLD5 have synergistic effects on stomatal development and plant growth. Our findings reveal that COBL7 plays a predominant and functionally redundant role with COBL8 in stomatal formation through regulating cellulose deposition and ventral wall modification in Arabidopsis.

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3