Transcriptional induction of cell wall remodelling genes is coupled to microtubule-driven growth isotropy at the shoot apex in Arabidopsis

Author:

Armezzani Alessia1,Abad Ursula1,Ali Olivier12,Robin Amélie Andres1,Vachez Laetitia1,Larrieu Antoine1,Mellerowicz Ewa J.3,Taconnat Ludivine45,Battu Virginie1,Stanislas Thomas1,Liu Mengying1,Vernoux Teva1,Traas Jan1,Sassi Massimiliano1

Affiliation:

1. Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France

2. INRIA team MOSAIC, Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France

3. Department of Forest Genetics and Plant Physiology
Swedish University of Agricultural Sciences (Sveriges lantbruksuniversitet) S901-83 Umea, Sweden

4. Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France

5. Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France

Abstract

The shoot apical meristem of higher plants continuously generates new tissues and organs through complex changes in growth rates and directions of its individual cells. Cell growth, driven by turgor pressure, largely depends on the cell walls, which allow cell expansion through synthesis and structural changes. A previous study revealed a major contribution of wall isotropy in organ emergence, through the disorganization of cortical microtubules. We show here that this disorganization is coupled with the transcriptional control of genes involved in wall remodelling. Some of these genes are induced when microtubules are disorganized and cells shift to isotropic growth. Mechanical modelling shows that this coupling has the potential to compensate for reduced cell expansion rates induced by the shift to isotropic growth. Reciprocally, cell wall loosening induced by different treatments or altered cell wall composition promotes a disruption of microtubule alignment. Our data thus indicate the existence of a regulatory module activated during organ outgrowth, linking microtubule arrangements to cell wall remodelling.

Funder

European Research Council

Agence Nationale de la Recherche

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3