Genome-Wide Identification and Hormone Response Analysis of the COBL Gene Family in Barley

Author:

Ren Panrong1,Ma Liang1,Bao Wei1,Wang Jie2

Affiliation:

1. School of Agriculture and Bioengineering, Longdong University, Qingyang 745000, China

2. College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China

Abstract

Barley (Hordeum vulgare L.), a diverse cereal crop, exhibits remarkable versatility in its applications, ranging from food and fodder to industrial uses. The content of cellulose in barley is significantly influenced by the COBRA genes, which encode the plant glycosylphosphatidylinositol (GPI)-anchored protein (GAP) that plays a pivotal role in the deposition of cellulose within the cell wall. The COBL (COBRA-Like) gene family has been discovered across numerous species, yet the specific members of this family in barley remain undetermined. In this study, we discovered 13 COBL genes within the barley genome using bioinformatics methods, subcellular localization, and protein structure analysis, finding that most of the barley COBL proteins have a signal peptide structure and are localized on the plasma membrane. Simultaneously, we constructed a phylogenetic tree and undertook a comprehensive analysis of the evolutionary relationships. Other characteristics of HvCOBL family members, including intraspecific collinearity, gene structure, conserved motifs, and cis-acting elements, were thoroughly characterized in detail. The assessment of HvCOBL gene expression in barley under various hormone treatments was conducted through qRT-PCR analysis, revealing jasmonic acid (JA) as the predominant hormonal regulator of HvCOBL gene expression. In summary, this study comprehensively identified and analyzed the barley COBL gene family, aiming to provide basic information for exploring the members of the HvCOBL gene family and to propose directions for further research.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province, China

Natural Science Foundation of Shandong Province, China

Longdong University Doctoral Scientific Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3