Spontaneous Formation of Small Sized Albumin/acacia Coacervate Particles

Author:

Burgess D J1,Singh O N1

Affiliation:

1. Department of Pharmaceutics, M/C 880, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA

Abstract

Abstract Microgel coacervate particles form spontaneously on mixing aqueous solutions of oppositely charged albumin and acacia, under specific conditions of pH, ionic strength, and polyion concentration, close to but not at the optimum conditions for maximum coacervate yield. The mean particle diameter of these coacervate particles is approximately 6 μm when suspended in aqueous media, as determined by HIAC/Royco particle analysis. The geometric standard deviation of the particles falls in the range 1·2–1·9 μm. The particle size was not dependent on the method of emulsification of the coacervate in the equilibrium phase, or on the stirring speed applied during the manufacturing process. The microgel particles were stable on storage, for periods up to forty-six days, without the addition of a chemical cross-linking agent, or the application of heat. Stability was measured with respect to the change in particle size of samples stored at different temperatures. The non-cross-linked microcapsules were also shown to be stable on pH change, to pH values outside the coacervation pH range. At the optimum conditions for maximum coacervate yield the albumin/acacia system formed a very viscous coacervate phase, which was unsuitable for microcapsule preparation. The Theological properties of albumin/acacia and gelatin/acacia complex coacervates optimized for maximum coacervate yield were compared. The albumin/acacia coacervate was shown to be three orders of magnitude more viscous than the gelatin/acacia system.

Funder

Campus Research Board of the University of Illinois at Chicago

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3