sabinaNSDM: An R package for spatially nested hierarchical species distribution modelling

Author:

Mateo Rubén G.12ORCID,Morales‐Barbero Jennifer1ORCID,Zarzo‐Arias Alejandra13ORCID,Lima Herlander4,Gómez‐Rubio Virgilio5,Goicolea Teresa1ORCID

Affiliation:

1. Departamento de Biología, Facultad de Ciencias Universidad Autónoma de Madrid Madrid Spain

2. Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM) Universidad Autónoma de Madrid Madrid Spain

3. Universidad de Oviedo Oviedo Asturias Spain

4. Universidad de Alcalá de Henares Madrid Spain

5. Department of Mathematics, School of Industrial Engineering‐Albacete Universidad de Castilla‐La Mancha Albacete Spain

Abstract

Abstract Species distribution models have evolved to combine species‐environment interactions across multiple scales. Spatially nested hierarchical models (NSDMs) offer a promising avenue by integrating datasets and predictive models from broad to fine scales. But a user‐friendly tool to execute these models remains an important ongoing challenge. To address this gap, we introduce the sabinaNSDM R package that provides a straightforward approach to develop NSDMs. This package merges global scale models, capturing extensive ecological niches, with regional scale models featuring high‐resolution covariates, to form a unified hierarchical modelling framework. This toolkit is designed to facilitate the implementation of NSDMs for ecologists, conservationists and researchers aiming to produce more reliable species distribution predictions. sabinaNSDM streamlines the data preparation, calibration, integration and projection of models across two scales. It automates (if necessary) the generation of background points, spatial thinning of species occurrence and absence (if available) data, covariate selection and the generation of NSDMs. This paper outlines the workflow and functions integrated into the sabinaNSDM package, complemented by an applied case study involving a pool of 76 tree species. Consistent with previous publications, the generated NSDMs facilitated precise predictions (mean AUC value through independent evaluation higher than 0.88) of species distributions under current and future environmental scenarios.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3